Magnetic Interaction between Two Non- Magnetic Particles Migrating in a Conduc- Tive Fluid Induced by a Strong Magnetic Field — an Analytical Approach

نویسندگان

  • Z. Sun
  • M. Guo
  • F. Verhaeghe
  • J. Vleugels
  • O. Van der Biest
  • B. Blanpain
چکیده

An analytical approach is developed in the present paper to investigate the interaction between two non-magnetic particles migrating in a conductive fluid due to an imposed strong magnetic field (e.g., 10 Tesla). The interaction between the conductive fluid and a single particle migrating along the magnetic lines is influenced by the magnetic field and can be represented by an additional fluid viscosity. Thus the effective fluid viscosity is discussed and the magnetic field effect on the particle migrating velocity is examined. For two particles, two kinds of magnetic forces are induced: namely, the attractive force due to the magnetisation and the repulsive force caused by the conductive fluid flow around the non-magnetic particles. The forces are then evaluated with the consideration of the magnetic field effect on the particle migration and become significant with the increase of the magnetic flux density. The counteracting behavior with a critical particle size of the interparticle magnetic forces is discussed and compared with different magnetic field densities and gradient values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of blood flow as third order non-Newtonian fluid inside a porous artery in the presence of a magnetic field by an analytical method

In this research various nonlinear fluid models have been introduced and the balloon movement in the porous arteries, including third-order non-Newtonian fluid, is described under the influence of the magnetic field. In order to solve the nonlinear equations governing the desired artery, an analytical method of approximation collocation and least squares are proposed. The effect of various para...

متن کامل

Effect of Hall ‎C‎urrent and Wall ‎C‎onductance on Hydromagnetic Natural ‎C‎onvective Flow ‎B‎etween Vertical ‎Walls

This paper has examined the analytical solution of steady fully developed natural convective flow of a viscous incompressible and electrically conducting fluid between vertical channel by taking the Hall current and induced magnetic field into account. We have obtained the non-dimensional simultaneous ordinary differential equations using the suitable non-dimensional variables and parameters in...

متن کامل

Simulation of tissue heating by magnetic fluid hyperthermia

Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....

متن کامل

Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field

The mixing of Newtonian and non-Newtonian fluids in a magnetic micro-mixer was studied numerically using  ferrofluid. The mixing process was performed in a three-dimensional steady-state micro-mixer. A magnetic source was mounted at the entrance of the micro-channel to oscillate the magnetic particles. The effects of electric current, inlet velocity, size of magnetic particles, and non-Newtonia...

متن کامل

Effect of non-uniform Magnetic Field on Non-Newtonian Fluid Separation in a Diffuser

The purpose of the present study is to investigate the boundary layer separation point in a magnetohydrodynamics diffuser. As an innovation, the Re value on the separation point is determined for the non-Newtonian fluid flow under the influence of the non-uniform magnetic field due to an electrical solenoid, in an empirical case. The governing equations include continuity and momentum are solve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010